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ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL
Richard G. Cornell, Ph.D.
and

Janace A. Speckman, M.S.

There are many situations of interest in public health where an estimate

is required for the parameter p in the model

Y=1-e¢e . (L)
In this situation Y represents the expected value of a proportion y calculated
from a count of the number of "reactions''among n independent observations and
t is a variable such as time or dosage.

This model has been applied to histoplasm sensitivity conversion rates
by Manos17 where in his paper Y is the theoretical proportion of positive reactors
to histoplasm at time t in years after the initial conversions take place. It
is assumed that ny,the number of positive reactors out of n people tested at
time t, has a binomial distribution with mean nY. Then p is interpreted as the
instantaneous annual conversion rate. Manos developed a weighted least squares
method of estimating p by calculating a straight line relationship between
(-1ogey) and t. This estimation procedure was also studied earlier by Fisher12
and has been discussed by several other authors.

19
Peto ~ has discussed another situation where tiie model

is applica
Here Y is the proportional of test animals which would not be expected to
survive after administration of a dose of t micro-organisms. The actual

number who fail to survive, ny, is assumed to have a binomial distribution.

Peto developed an iterative maximum likelihood estimation procedure for this




model and presented tables to facilitate calculations. Finney8’9 considered
the same bioassay model as Peto and developed slightly different iterative
calculation schemes for maximum likelihood estimation. Johnson and Brown15
and Fisher11 considered a similar situation except that they specified the
dosages to be those which would be used in a serial dilution biological assay.
Both/ggﬁnson and Brown and the Fisher papers present estimation procedures for
such assays.

Another example is an experiment in genetics performed by Edington,
Epler and Regan7 to study the frequency-dose relation of X-ray induced
Y~-suppressed lethals in drosophila. The model was fitted to data on orthodox
lethals where y is the §r0portion of orthodox lethals found at a dose of
t roentgens of X~rays. For a given dosage it is again reasonable to assume
that ny has a binomial distribution, where n is the number of chromosomes
tested. In radiation genetics and virology the model (1) is called the
one-particle or one~hit curve. The derivation of the model in these contexts
was discussed more fully by Cochran.4

These examples illustrate a variety of situations in which the simple
exponential model is encountered. The importance of this model in epid-
emiology was discussed more fully by Muenchlg, who also gave a nomogram which
can be used in estimating p . Muench called the model (1) the simple catalytic
curve, He points out that this model will arise whenever the change in Y
for a small change in t is proportional to Y. The proportionality constant

or rate of change is p .

The references discussed above also indicate that a variety of methods
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are being used to estimate the parameter p in (1). 1In this paper several of

these methods will be presented, illustrated and compared in order to guide

the public health or medical investigator who encounters this model in his
research. 1In the examples cited it is reasonable to assume that ny, the

observed count, has a binomial distribution for each value of t. All of the methods
discussed in this paper may be applied under this assumption although some of

them do not require this assumption and one involves a different assumption.

METHODS OF ESTIMATION

Graphical. Values of u = [-loge(l-y)] are plotted against the corresponding t
values in the graphical method of estimating p. A straight line is drawn
through the origin by eye to describe the graphical relationship. The slope

of this line is an estimate rg of p.

Maximum Likelihood. As mentioned earlier, Peto19 has derived the maximum like-

lihood estimator of p for the situation where ny has a binomial distribution

for each value of t. Consider k samples of size n. taken at various values of

ti’ i =1,2,...k. The binomial probability at ti is ¥ = 1-exp(-pti). Let '

be the proportion of the n, at time t, exhibiting the characteristic of interest.
Using this notation, the equation for the maximum likelihood estimator L) of

Am e~
S Vic o

o

1 .
f(r ) =-Zn,t, + bN =0 (2)
mf ; 1 rmZ i i

where xi = tir Tables A and B of Peto's article aid in an iterative solution

mf’

of equation (2) utilizing Newton's method, where in his notation ni(l-yi) =x..
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Finney 9,10 also presented tables to aid in calculating rmg using a different
iterative calculation scheme which is patterned after that usually used in
probit analysis for a similar but different bioassay model. 1In his book
Finney10 briefly reviewed several papers on maximum likelihood estimation for

this "dilution series' model.

Least Squares. The least squares estimation procedure gives a method for

calculating the slope of a straight line through the origin relating

u = [-loge(l-y)] and t in such a way that the sum of squares of deviations of

the u's about the line is minimized. The slope of this line is the least squares
estimate rﬂs of p. It ‘involves the assumption of homogeneity of variance of

the [-loge(l-y)] values about the fitted line. This procedure is also a maxi-
mum likelihood procedure when the loge(l-y) values have a normal distribution
with homogeneous variance. The formula for the estimator is

-? t log (1-y,)
r = . (3)
£s T ti

i

Weighted Least Squares. If the assumption of homogeneity of variance of the

u values which is inherent is using least squares estimation is not tenable,
then a possible alternative is the use of weighted least squares calculations
as suggested by Manosl7. 1f we define ers to be the weighted least squares

estimator of p, then
-f witiloge(l-yi)
. (4)
z w.t?
Coid
i

r -
wis
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Each weight LA is chosen to be inversely proportional to the estimated variance
of the corresponding uy variable. This estimated variance is obtained through
approximating u, by the first two terms of a Taylor series expansion and it
involves the assumption that each ny variable for a particular value of t has

a binomial distribution. It also involves approximating E(y) by y for each
value of t used. The weights are given by w, = ni(l—yi)/yi. Substitution of

these weights in (4) yields

-z [ni(l—yi)ti 1oge(1-yi)]/yi
Tags = - 2 ) )
>i3 n (L-y)t /y,

I1f a given y; = 0 or 1 it is common practice (for example, see Berksonl)
to replace it by 1/2n or (1-1/2n), respectively, in order not to become in-
volved with an indeterminate result in (5). Another procedure has been pro=-
posed by Fisher12 for avoiding this difficulty by using the data only to
obtain an initial estimate in an iterative procedure. This is discussed by
Cornfield6 who also suggested the possibility of applying weighted least
squares calculations to the (l-y) proportions instead of to their logarithms.

In some instances it is possible to replace indeterminate terms in (4) by

the appropriate limit as Yy approaches either 0 or 1.

Partial Totals. The method of partial totals, which has been discussed by

Speckman and Cornellzo, consists of equating Z(l-yi) to its expected value
-pt,

;(14Yi) = f e . 1If the t values are equally spaced, that is, ti+1--ti = d,
i
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then, letting v = exp(-rptd), the estimation equat ion is

k
fv) = v B L ey 5 eyl = 0. (6)
i=1 N
1f t, = 0, this simplifies to
k k
f(W) =v + (1-v) £ (l-y) -1=0. (7)

i=1

Either equation (6) or (7) may be solved for v by Newton's iterative procedure

and then rpt = (-logev)/d. Alternatively, when t1 = 0, tables given by Speckman
k

and Cornell20 may be entered for values of S = X (l-yi)/k and k to obtain the
i=1

value of rptd such that r satisfies (7). 1If t1 = d estimates rptd may also

pt
be obtaired by entering the tables with S+ 1and k + 1. Tables of estimates
are presented for k = 5,6,5,10,15,20 and 25. Partial totals estimates for other

values of k can sometimes be obtained by interpolation.

Moments. Muench18 has presented the method of moments for computing an estimate
r of the parameter p in (1). He computed the area under a histogram drawn
k

from the data as A = % dei where each di is the width of the interval on
0

the t scale for which the corresponding i proportion is calculated. Muench
assumed that the range of t values, for which the histogram with area ZA is

drawn, if from O to 7. He approximated YA by the integral

[T ¥ade = I (1-ePY at = v+ (™ - 1)/p .
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He equated YA to this integral in order to solve for his estimate rm of p.

The estimation equation, after dividing both YA and the integral by T is
b

-r T
A/t =1+ ®- /r T . (8)

Muench's book18 contains a nomogram which gives values of
1
r, =T /100 9
for various values of

£'A = (100) A/t . (10)

Finite Differences. The model (1) can be generated by the difference equation

-pd -pd _
Yi+1 - (l-e ") -e Yi =0 (11)

where it is assumed as for the partial totals method that the ti values are
equally spaced at intervals of width d. Lipton and McGilchrist16 have given
two methods of estimating p in (1ll). One is to choose exp(-pd) to minimize
k-1

151 Di where Di is obtained from the left side of (1) by replacing the Y

expectations by the corresponding y proportions calculated from the data.

This leads to an estimator r of p which can be calculated from the formula

£d1
[ k-1 ]
Lz -y ) 1=y, )
v =-%log |-k : (12)
£dl a %8 k-1 5
L (l-yy)
i=1
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The other finite differences method consists of minimizing

k-1 §
L (= D.)2 which yields the estimate r of p given by
, . i £d42
i=1l i=1
- 3
k
2 S (y.-
D J(yJ ¥y
o2 "3 log 1l - " ; (13)
X S,
j=2
where
j-1
S. = I (1l-y.) . (14)
I o= .

The estimator given by equation (13) is similar to that given by Hartley14 under

the heading of internal least squares.

Fisher. Fisher11 presented another procedure for the model
. =(i~1) . . c

E(yi) = l-exp (-pa ), i =1,2,...,k, for constant a. Letting a =e ,

we can regard his procedure as an estimation procedure for (1) with the t

values spaced exponentially, that is, with t = e* for equally spaced

x's, ~© < x <o, It is assumed that E(y) nearly ranges from 0 to 1.

Fisher set

k k
£y, = £ [teesp (pa 7Dy (15)
i=1 ' i=l
. . . 113
and solved for an estimate re of p by a numerical procedure. Fisher and Yates
book gives tables for a = 2, 4, and 10 which list values of a quantity K for
k k

various pairs of values of L v, and k. 1In their notation I y; =% and k = s,
i=l i=1



Then the equation

k

loglo(rf) = ( =z yi) log10 a-k (16)
i=

1

may be solved to obtain Te -

Fisher and Yates' tables may be used even if the t values used are not
e provided that t,/t,, , =
equal to a (i-1) for i = 1,2,...,k and a = 2, 4, or 10/ The procedurelis1+1

exactly the same as that given above except that equation (16) yields

loglo(rftl) .

Spearman. Like the Fisher procedure, the Spearman method presented by Johnson
and Brown15 may be used for the model (1) when the t values used are such
that t = e* for equally spaced values of x with intervals of width c. Cornell5
has shown that the Spearman estimator may be derived by replacing the right
side of equation (15) by a integral approximation under the assumption that
k is large and ¢ is correspondingly small. The resultant Spearman estimator
r, of p is given by

k

r, = exp(c _?

Y, "% T c/2 - vy) (17)
i=1

where the range from x, to X is assumed to be great enough so that ¥y = 0

1

- ale - R a == O E2799
v I Lo e

1 * ~ e del Toes
Le 1l LIS €equdullivily Y = e i)

<~
o

and y
k

ILLUSTRATIONS
Two sets of data are used to illustrate the various methods discussed

above. The first set of data has equally spaced t's, the second has
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exponentially spaced t's. Since the graphical, maximum likelihood, least
squares, weighted least squares and moment estimation procedures do not
require any specific spacing of the t's, they will be illustrated in both
examples. Partial totals and finite differences, which require equal spacing,
will be illustrated only in Example 1. The Fisher and Spearman estimators,
requiring exponential spacing, will be illustrated only in Example 2.

Example 1. Equally spaced t's.

The data for this example come from a genetics experiment discussed
by Edington, Epler and Regan7. The purpose of the experiment was to establish
a dose response relation of X-ray induced Y~suppressed lethals in drosophila.
Five doses of X-rays, shown in column (1) of Table 1, were administered to
n chromosomes as shown in column (2) and the numbers of orthodox and Y-suppressed
lethals were counted. The number of orthodox lethals observed are shown in
column (3) with the corresponding proportions, y, given in column (4). With
model (1) and the assumption that ny is binomially distributed, we would
expect that y = 0 when t = 0. Since this is not the case, due to the natural
occurance of lethals of about 0.02 percent, the data are corrected for this
discrepancy. Thus the y values in column (4) are computed by taking the ratios
of the corresponding entries in column (3) to those in column (2) and sub-
tracting 0.0002.

The eight estimates calculated for this example are listed in Table 4.

Graphical Method. Columns (5) and (1) of Table 2 enable u = -loge(l-y) to be

plotted against t as in Figure 1. The slope of this line, which was fitted by

eye to relate u and t, is rg = 0,0000305.
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Maximum Likelihood. Peto's iterative calculations involve the computing

of nyA and nyB for each t wvalue during each iteration. He gave tables of

A and B corresponding to various trial values of X, = tirmz . By following

his instructions and using columns (3) and (4) of Table 2 as well as r as an

initial estimate, one cycle of calculations yields rog = 0.00003048.

£

Table 1 - Data for Example 1

Dose Chromosomes Orthodox
t Tested, n Lethals y
(1) (2) 3 (4)
0 4358 1 0.0000
1082 3852 111 0.0286
2164 3605 232 0.0642
3246 2313 259 0.0919.

4328 2206 292 0.1322
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Figure 1 - Graph of u = -loge(l—y) against t with the line

fitted by eye for Example 1
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Table 2 - Calculations for Example 1 Leading to rg,r
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Zs’rwzs’ and rmz

u = 2 v = 2. -6
t l-y nt ny -loge(l-y) t tu n(l-y)/y wt x10 wtu
L (2) 3 (4) (3 (6) ) (8) €)) (10)

0 1.0000 0 0 0 0 0 0* 0*
1082 0.9714 4,167,864 110 0.0290 1,170,724 31.3780 130,839 153,177 4,105,472
2164 0.9358 7,801,220 231 0.06063 4,682,896 143.4732 52,555 246,110 7,540,233
3246  0.9081 9,130,998 259 0.0964 10,536,516 312.9144 27,791 292,822 3,696,244
4328 0.8678 9,547,568 292 0.14183 18,731,584 613.7104 14,478 271,197 3,885,330
TOTAL 4,6831 30,647,650 35,121,584 1101.4760 963,306 29,227,279

*
L'Hospital's rule shows that the correct value for these terms is zero in the

limit as y approaches zero,

Least Squares. The totals for columns (6) and (7) in Table 2, when substituted

in equation (3), give Ty = 0,00003136.

Heighted Least Squares. Column (8) in Table 2 gives the weights needed for

these calculations. Reference to formula (4) shows that ers is the ratio of

the totals of columns (10) and (9), that is, r ¢ = 0.00003034.

wi
Partial Totals. The range of i from 1 to 5 in Table 3 shows that k = 5 and
5 -
the total for column (4) gives X (1-yi) = 4.6831 so that S = (4.6831)/5 = 0.9366.
i=1

Speckman and Cornell's20 tables of rptd values have entries for k = 5 and
S = 0.93 and 0.94. Linear interpolation yields rptd = 0,0333 and rpt = 0,00003078
since d = 1082, Alternatively, rPt could have been determined by solving equation

(7) iteratively.
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Method of Moments. To calculate r , e first observe that the difference
between two consecutive dosages is constant and equal to 1082. Taking each
t value as the midpoint of an interval for the histogram, we have di = 1032

for all i, and T = tk + d/2 = 4328 + 1082/2 = 4869. Thus,

5
1 y,d, = (1082) {51 y, = 342.8858,

A =
i

I Mw

using the total for column (3) of Table 3. From equation (10),
Z'A = (100)ZA/T = (100)(342.8858)/(4869) = 7.0422.

Entering Chart I in Appendix A of Muench's book18 with this value of £'A,

we obtain r; = 0.0015. This leads to
r, = (100) ré/r = (100) (0.0015)/(4869) = 0.0000308

from equation (9).

Finite Differences Method 1. Substituting the totals of columns (5) and (6)

of Table 3 along with d = 1082 into equation (12) yields

1 3,5182
r = A

ga1 = " T(1082) 1%8e(3.6439 ) = 0-00003245 .

Finite Differences Method 2. Substitution of the totals of columns (8) and

(10) into equation (13) yields

0.9268

r = 37.8947 ) = 0.00003123 .

1
£42 = ~ (1082) '°8(1
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Table 3 - Calculatious for Example 1 Leading to rpﬁ’rm’rfdl’ and r

£42
2 i-l 2
i t Y -y, L=y, -y @A~y ) Si=;il(l-yi) S; ¥yYy 5,047y
1 I (@ (3) (4) (5) (6) (7) (8) 9 (10)
1 0 0.0000 1.0000 1.0000 0.9714
2 1082 0.0286 0.9714  0.9436 0.9090 1.0000 1.0000 0.0286 0.0286
3 2164 0.0642 0.9358 0.83757 0.8498 1.9714 3.8864 0.0642 0.1266
4 3246 0.0919 0.9081 0.3246 0,7880 2.9072 8.4518 0.0919  0.2672
5 43283 0.1322 0.8678 3.8153 14.5565 0.1322  0.5044
TOTAL 0.3169  4.6831  3.6439 3.5182 27.8947 0.9268

Table 4 - Estimates of p Computed by Seveyal Different Methods for Example 1

Weighted

. Maximum Least Partial Finite Finite
Method Graphical Likelihood Squares Least Totals Moments Differences Differ-
Squares
Method 1 ences
Meth, 2
Estimate 305 304.8 313.6 303.4 307.8 308 324.5 312.3
7

X 10

Example 2. Exponentially spaced t's.

For this example we use data obtained by C;rstea and Suhaciu3 in studies
concerned with the passive sensitization of guinea-pigs. Table 5 gives their
data on the mortality rates of guinea-pigs sensitized passively with intraperi-

toneal rabbit anti~ovalbumin serum and challenged 24 hours later with intracardial
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antigen. Each rate is based on ten animals.
The values for the seven estimates calculated for this example are

displayed in Table 6. The calculations for r , r ,, r, and r are not
g’ mf’ Us w

Is

shown since they were done in the same manner as for Example 1 except that

Vg = 0 was replaced by 1/2n = 0.05 in computing the denominator of T g 39

Is
given by equation (5) since this denominator approaches infinity as any
y approaches zero. The term in the numerator for i = 5 was replaced by its
limit as y approaches zero, which is nt = 0.125. This is essentially the same
as the procedure followed in calculating T ols for Example 1 except in that

instance the smallest t value was zero.

Method of Moments. The calculation of this estimate is the same as in Example

1 except for the division of the range of t into intervals. In this calcula-
tion, equal intervals on the log t scale were used. That is,

di = antilog [log €+ (log 2)/2] - antilog [log t;" (log 2)/2] and

T = antilog [log0.2 + (log 2)/2] = 0.283 .

Fisher. To apply this procedure, we note that ti/ti+ = 2, i=1,2,3,4. However,

1

t, = 0.2 instead of 1. Therefore, this method with a = 2 gives a solution for
tire = (0.2)rf . In Fisher's notation s =k = 5 and x = Sy = 2.5. Entering
Fisher and Yates'13 Table VIII 2 with a = 2 (Two-fold), we find K = 0.358.
Substitution in equation (16) yields 0.395 which for this example equals

log10 (O.2)rf . Solving for r, gives r_ = 12.4 as listed in Table 6.

f f
Spearman. From Table 5 we see that the largest t value is 0.2 which is t

k

log t, = -1.60944. Also, ¢ = 1oge(ti/ti+1) = log, 2 = 0.69315

and Euler's constant =y = 0,57722. Substitution of these quantities in equation

The corresponding X

(17) yields the value of 11.2 which is given for r, in Table 6.
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Table 5 - Data for Example 2

Dose of Antiserum (mf) Mortality Rate Survival Rate
t y l1-y
1) (2) (3
0.2 0.9 0.1
0.1 0.8 0.2
0.05 0.7 0.3
0.025 0.1 0.9
0.0125 0] 1.0
2.5

Table 6 - Estimates of p Computed by Several Different Methods for Example 2

Maximum Least Weighted
Method Graphical TaxLn Least Moments Fisher Spearman
Likelihood Squares Squares

Estimate 13.5 12.9 12.8 9,2 7.1 12.4 11.2
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DISCUSSIONS AND COMPARISONS

Ease of Computation. The examples investigated in this last section help

compare some of the characteristics of the estimation procedures described in
this paper. Also, a summary of the procedures considered in this paper with
regard to the computation of estimates is given in Table 7. As is indicated

in Table 7, the graphical procedure is simple and easy to carry out. It re-
quires no assumption concerning the spacing of the t values provided at least
two different t values are used or concerning the distribution of the devia- .
tions of the data about the model of expectations given by (l). However, the
graphical method depends on the judgment of the person drawing the line to
.describe the data. It usually leads to a lack of reproducibility and the
variability in the estimates determined by this method is. impossible to assess.
The graphical method ordinarily is used only to obtain a preliminary parameter
estimate which is subsequently refined, perhaps.using an iterative computa-
tional procedure. The unweighted and weighted least squares methods

as well as the moment, Spearman and-finite differences procedures are relatively
simple computationally since they do not involve iterative calculations. - The
partial totals and Fisher methods require extensive calculation if the esti-
mation formulas are evaluated entirely with computations, but, as mentioned
earlier, tables are available which.make such calculations unnecessary in

many instances and make these estimation procedures the easiest to apply in
these instances. For the maximum likelihood method, the tables given by Peto

and Finney only assist in, but do not eliminate, iterative calculations and-
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therefore this method remains une of the more difficult computationally.

Distribution and Sampling Specifications, Large Sample Properties. As pre-

sented in this paper, only the maximum likelihood and weighted least squares
methods take into account variability in the n, values. The others would
not be preferred if the n, were very different from each other. However,

some of them performed well on Example 1 where n, is nearly twice as large

1
as ng. The maximum likelihood and weighted least squares procedures are

also the only ones which make explicit use of the assumption of a binomial
distribution of the ny variable for each t value. The other estimation methods
only use the functional form of the expected value of y as given by the model
in equation (1). The maximum likelihood, least squares, weighted least squares
and moment procedures share with the graphical method the advantage of being
applicable regardless of the spacing of the t values while the partial totals,
Fisher and Spearman methods require particular spacings of the t values. Like
the partial totals method, the two finite differences methods require equally
spaced t values. These two methods will not be discussed further because no
attempt has been made to evaluate them for the model under consideration.

The evaluation of the least squares and weighted least squares procedures
is difficult because of the necessity of replacing y by an arbitrary approxima-
tion when vy = 0 or 1. making the properties usually associated with least
squares procedures in doubt. Moreover, in order for the unweighted least
squares method to yield an estimator with minimum variance, the variables
u, = [- loge(l-yi)] would have to have the same variance for all i, an assump-

1

tion that is not fulfilled, for instance, under the binomial model proposed
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Table 7 -~ Summary of Ten Procedures with regard to the Computation of Estimates

Restrictions| Restrictions Distribution Ease of Computational
on Spacing on Approximate | Assumptions for | Computation | Aids
of t Values | Range of y Derivation of
Estimation
Method Methods
Graphical (g) Very easy
Maximum Binomial Difficult, | Tables used
Likelihood (m4) iterative in iterations
Least Constant vari- | Easy,
Squares (/4s) ance of log y direct
Weighted Least Binomial Easy,
Squares (w/s) direct
Partial Equal Easy with Estimates
Totals (pt) tables tabled,
tl = 0,d
Moments (m) Equal Easy with Nomogram for
Preferred nomogram estimates
Finite Equal Easy,
Differences direct
Method 1 (£dl)
Finite Equal Easy,
Differences direct
Method 2 (£d42)
Fisher (f) Exponential 0tol Easy with K tabled for
tables a=2,4,10
Spearman (s) Exponential Otol Easy,

direct
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earlier for maximum likelihood estimation. Even the weighted least squares
method does not necessarily lead to a minimum variance estimator under this
model because the appropriate weights are not necessarily known exactly but
are estimated from the data and because of the problems when y = 0 or 1.

However, when the sample size n, for each i is large enough so that no

Y.

; = 0 or 1, under our model the weighted least squares estimator is approxi-

mately normally distributed. 1In fact, the weighted least squares estimator

is consistent and asymptotically efficient with a variance approximated by

k

1/ = witi when each n, is sufficiently large.
i=1 '

Large sample results are also known for several of the other methods.
The maximum likelihood estimator is consistent and asymptotically efficient
and normally distributed provided that for given ti at least two of the n,
become large as the total sample size becomes large for given ti. Peto19
gives a procedure for estimating the asymptotic variance of the maximum
likelihood estimator. The situation where Muench's method of moments is most
likely to be used, especially for large samples, is when ti values are equally
spaced and E(y) comes close to ranging from 0 to 1. In this instance, Cornell5
has shown that Muench's method of moments and the partial totals methods are
equivalent when observations are taken for a large number of t values, that
is, for k large. Moreover, Speckman and Cornellzoshowaithat the partial totals
estimator, rpt, is approximately normally distributed for large sample sizes

whether or not k is large. They give an expression for the asymptotic variance

of r . and they show that r

pt is consistent but not asymptotically efficient.

pt
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It has also been shown by Cornell5 that Fisher and Spearman estimators are
equivalent for k large. Fisherll, and Johnson and Brownls,vgave a formula for

the asymptotic variance of these estimators which are consistent and asymptoti-
cally normally distributed. These procedures have an asymptotic relative
efficiency of 88 per cent. 1In deriving these large sample properties independent
sampling at different t values and finite variances of the y variables were
assumed. The large sample results derived for the Spearman and Fisher procedures
also require addition of the assumption that for any given t value, the correspond-

ing y variable is binomially distributed.

Small Sample Properties. The large sample properties just reviewed are useful

but can be very misleading for small samples., This is particularly true for

the least squares and weighted least squares procedures since the large sample
Therefore, to better evaluate these methods,

conclusions require a large sample for each t value for these methods./it is

necessary to examine the results of Monte Carlo studies. 1In their study,

Speckman and Cornell20 compared the least squares, weighted least squares, maxi-

mum likelihood and partial totals methods for the model discussed in this paper

with t values a constant interval of width d apart for the following parameter

combinations:
pd = 0.30; k = 5; n = 5,10,15,25,
k = 103 n = 5,10
k = 15; n = 5,25,
pd = 0.15; k = 10; n = 10,
pd = 0.10; k = 15; n = 5,25.

They included the assumption that ny has a binomial distribution for each value
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of t in their model. They found that the partial totals estimator is slightly
less biased than the maximum likelihood estimator, particularly for small n and
k. The least squares and especially the weighted least squares estimators are
considerably more biased. In their study for y = 0 and 1 in the two least squares
procedures, an adjustment of 1/2n was made only when the indeterminate form of
concern had no limit as y approached the appropriate end-point. If such a limit
existed, it was used. In comparing the methods on relative efficiency, which
equals the variance plus the square of the bias, for pd = 0.30 the partial totals
estimator was superior for k = 5 and either the least squares or partial totals
method was superior for k = 10 and 15. For pd = 0.15 and 0.10, for which only
k values of 10 and 15 were studied, the maximum likelihood estimator was more
efficient. The weighted least squares estimator had low efficiency relative to
the other methods in most cases and never had the highest efficiency. 1In a
comparison of the maximum likelihood and parftial totals estimators, it was found
that they performed very similarly, although the partial totals estimator had
slightly higher efficiency for the small sample sizes while the opposite was
true for the larger sample sizes studied empirically. A recommendation was
also made that asymptotic variances be multiplied by 1.5 when used to estimate
variances for small samples. Further work has shown that for some situations
this factor may be too small.

Comparable evidence on the properties of the other estimators for small
samples is not available. However, Johnson and Brown15 presented a bias approxi-
mation for the Spearman estimator which can be used to obtain a less biased

2 . .
estimator. Also, in studies summarized by Brown, Spearman estimation has been
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found to have high efficiency relative to maxiﬁum likelihood for small samples
for models different but similar to the one considered here. However, since
the Spearman method involves approximating a sum used by Fisher under the
assumption that k is large, the Fisher method would seem preferable for small
samples. Similarly, the method of partial totals for equally spaced t values
would be preferred to Muench's method of mements since Cornell5 has shown that
they are related in the same way as the Fisher and Spearman methods in this
instance. When the t values are not equally spaced the integral used by Muench
is the same as that when they are equally spaced, so his method of moments would
appear inappropriate then. 1In particular, if the t values are exponentially
spaced, the Spearman method, which is similar to the Muench method except that
it is explicitly devised for exponential spacing instead of equal spacing, would
be more appropriate.

The examples given earlier illustrate several properties discussed.

In Table 4, the estimates computed by several methods for Example 1 are given.

than the others
The estimate computed by the first finite differences method is much larger/

differences method
vhile those computed by least squares and the second finite / are close to-

gether and relatively large. The other estimates are close together with the
weighted least squares estimate being the smallest. This supports the evidence
given above that least squares estimators for the model being studied, whether
unweighted or weighted, are biased more than maximum likelihood and partial
totals estimators. The partial totals and moment methods, which are similar
for equally spaced t values as used in this example, give essentially the

same answer. The estimates given for the second example, which has exponential
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spacing of t values, in Table 6 are similar except the estimates computed

by the weighted least squares and moments methods are small relative to the
others. Unsatisfactory performance of weighted least squares for small samples
is illustrated here as is the inappropriateness of Muench's method of moments
when the t values are not equally spaced. These two examples, of course, give

no indication of the sampling variability of the various estimators.

SUMMARY AND CONCLUSIONS

Several methods of estimating the parameter in a simple exponential
model, which often arises in epidemiological studies and biological assay, are
presented, illustrated and compared. The method of maximum likelihood, which
can be used for any spacing of doses, is known to have very desirable large
sample properties and behaved quite well in the limited Monte Carlo study.
The simple method of partial totals is suggested as a possible alternative to
maximum likelihood for small samples for equally spaced doses. The Fisher and
Spearman methods, which are also computationally easy, are suggested as alter-
native methods regardless of the sample size for exponentially spaced dosages,

that is, for dosages whose logarithms are equally spaced.
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